

Richard Wies & Marc Mueller-Stoffels

## Wind-Diesel Applications Center Test Facility (Hybrid Applications Lab)



#### **WiDAC Team Members**

- WiDAC Lead
  - Marc Mueller-Stoffels
- WiDAC Technical Liaison
  - Daisy Huang
- WiDAC Outreach Liaison
  - Julie Estey
- Other team members
  - Project dependent: research engineers, staff





## **Energy Technology Lab (ETL) Team**

- ETL Manager
  - Brent Sheets
- ETL Engineering Lead
  - David Light (Decades of Experience)
- Research Engineers
  - HVDC
  - Controls
  - Heat Recovery
  - Batteries
  - Advanced Modeling





### **Hybrid Applications Test Bed**

- 1:1 model of rural Alaskan power plant
- Immediate Purpose:
  - Migh contribution wind power research
  - Diesel-off mode research
  - Enable new technologies Development Partnerships
  - Performance testing
  - Integration studies
  - Training





### **Applicability for Rural Alaska**

- Displace/reduce use of diesel fuel
- Reduce cost of power
- Increase sustainability
- © Create opportunity





# Wind-Diesel Test Bed Assets/Status

- ACEP
- 300 kWe Caterpillar (operational)
- 125 kWe Detroit (to be overhauled)
- 100 kWe Wind-Turbine Simulator (operational)
- 1000 Ah @ 336 VDC Lead-Acid Battery (operational)
- 250 kW 208 VAC Load Bank (operational)
- 250 kW 480 VAC Load Bank (in production)
- © Generic Control and Data Acquisition Circuits (to be completed)
- Grid Forming Inverter



#### **Assets - Diesel Gensets**

- 300 kWe Caterpillar
- 125 kWe Detroit
- Woodward EasyGen Controls
  - Very high level of control
- Building heat recovery loop





#### **Assets – Wind Turbine Simulator**

- 100 kWe Motor-Generator
- Wind speed input
- © Can model various turbines





#### **Assets – Battery & Load Banks**

- Sealed Lead-Acid
- 6 1000 Ah @ 336 VDC
  - 150 kWh (DC) usable
  - 6 160 kW max Power
- Two variable load banks
  - © 250 kW 208 VAC
  - © 250 kW 480 VAC
  - $\bullet$   $\Delta P = 5 kW; <math>\Delta Q = 10 kVARs$
  - PF = [0.8, 1] at max load





## **Assets – Grid Forming Inverter**

- 200 kVA DC/AC
  bi-directional IGBT
  inverter
- Uses battery
- Frequency and VAR support
- Migh contribution of wind
- Diesel-off mode





#### **Energy Systems Integration**

- Major needs identified
  - © Optimization: Evaluate centralized vs. distributed control
  - Need highly distributed generation circuit model
  - Mow large can the grid be without rotating equipment?
  - Mow can we best integrate new technology with existing infrastructure?



## **WiDAC Current Projects**

- Research and Development
  - Independent Data Acquisition, ongoing
  - Grid-Forming Inverter, ongoing
  - © Control Systems, ongoing
  - Advanced Modeling, ongoing
  - © Energy Storage, planned
  - Wind-Diesel Systems Re-Analysis, planned
  - Best Practices Guide, planned
  - Identify Cold Region Small Turbine Test Site



#### **Data Collection and SCADA**

- Flexible integration of Control Schemes
- General interface hardware built
- © General, robust data collection in development



- © Currently, build/test ABB distributed control system
- Setup for hardware-in-the-loop hybrid models
- Development and testing of data collection equipment for remote locations (BlackBox)



#### First Project - Grid Forming Inverter

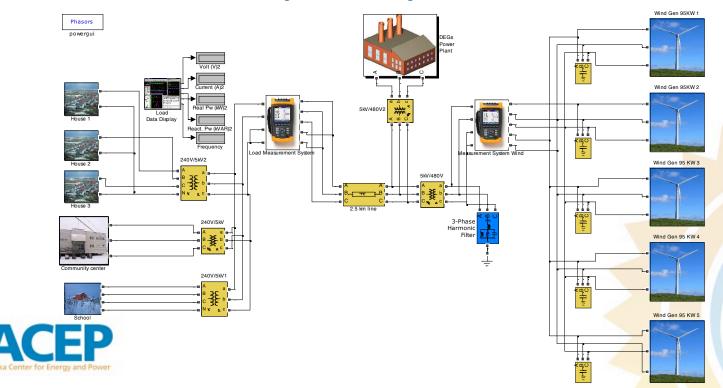
Funded by the Denali Commission, Partnership with Marsh Creek LLC

- Project Benefits:
  - Enabled full power level development
  - Testing informed further development
  - Basis for informed decision by stakeholder
- Project Results:
  - Diesel-off mode partially confirmed: requires sync. condenser (spinning mass)
  - Grid support mode confirmed

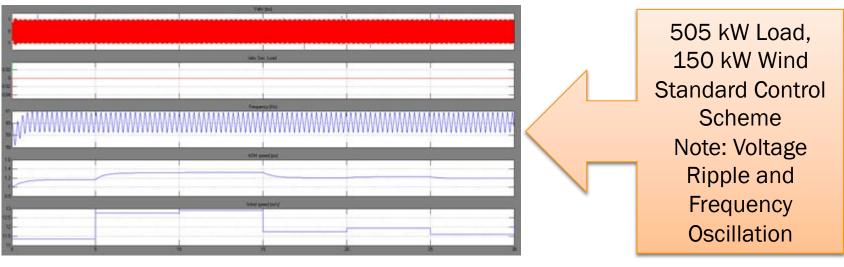




### **Advanced Modeling Research**


- 3 Graduate Projects under DOE EPSCoR
  - © Eshwar Chukkapalli, MS EE with Rich Wies
  - Maura Sateriale, MS ME with Rich Wies
  - Nick Janssen, PhD with Rorik Petersen






## Dynamic Wind-Diesel Generation Management Model, Eshwar Chukkapalli

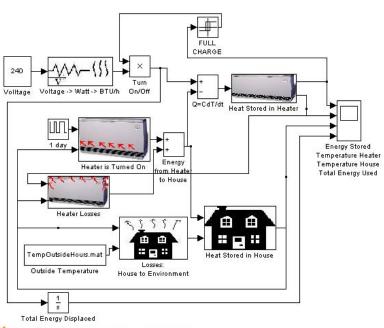
- Objectives
  - Economic Dispatch of Wind & Diesel
  - © Control & Stability with Dynamic Wind Resource

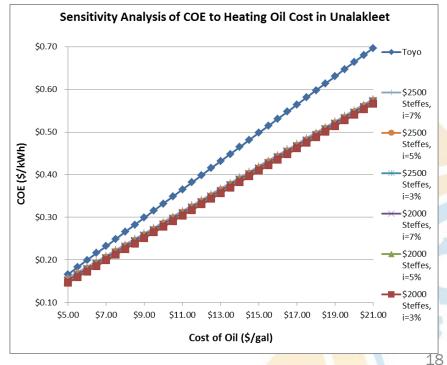


## Dynamic Wind-Diesel Generation Management Model, Eshwar Chukkapalli



505 kW Load, 150 kW Wind, GA Diesel Control Note: Voltage and Frequency Stabilize



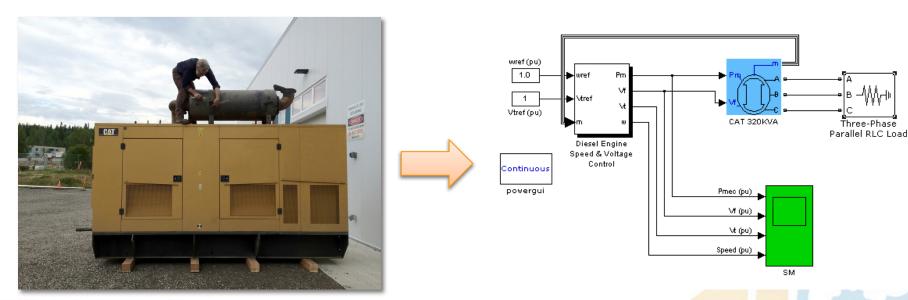




#### Electrothermal Heat/Storage Model,

Maura Sateriale

- Objectives
  - Electric Power from Wind to Displace Oil Heating
  - Thermal Storage as Diversion Load



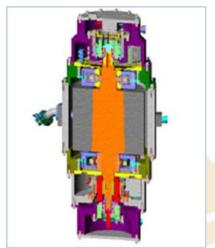







#### ETL Component Model, Nick Janssen

- Objective
  - Reduce project cost on equipment testing
  - Groundwork for Hardware-In-The-Loop testing






#### **Path Forward**

- Near-term:
  - Electrothermal storage (funded)
    - Test dispatch strategies
    - Self-regulated grid control
  - Fuel additive study (funded)
  - Fly-wheel integration and testing study (funding pending)
  - Expand SCADA, metering, and equipment







#### **Path Forward**

- Long-term:
  - Meat recovery system
  - Include PV simulator
    - Wind-PV-Diesel interaction
    - Improve Diesel-off capabilities
  - Training facility
    - Wind-diesel system certificate
    - Renewable Energy Systems Degree



















































